Тангенциальное ускорение. Ускорение Куда направлено нормальное ускорение

Изучение физики начинают с рассмотрения механического движения. В общем случае тела движутся по кривым траекториям с переменными скоростями. Для их описания используют понятие ускорения. В данной статье рассмотрим, что такое тангенциальное и нормальное ускорение.

Кинематические величины. Скорость и ускорение в физике

Кинематика механического движения - это раздел физики, который занимается изучением и описанием перемещения тел в пространстве. Кинематика оперирует тремя главными величинами:

  • пройденный путь;
  • скорость;
  • ускорение.

В случае движения по окружности используют аналогичные кинематические характеристики, которые приведены к центральному углу окружности.

С понятием скорости знаком каждый. Она показывает быстроту изменения координат тел, находящихся в движении. Скорость всегда направлена по касательной к линии, вдоль которой тело перемещается (траектории). Далее линейную скорость будем обозначать v¯, а угловую скорость - ω¯.

Ускорение - это скорость изменения величин v¯ и ω¯. Ускорение - это тоже однако ее направление совершенно не зависит от вектора скорости. Ускорение всегда направлено в сторону действующей на тело силы, которая вызывает изменение вектора скорости. Ускорение для любого типа движения можно рассчитать по формуле:

Чем сильнее изменится скорость за интервал времени dt, тем больше будет ускорение.

Касательное и нормальное ускорение

Предположим, что материальная точка движется по некоторой кривой линии. Известно, что в некоторый момент времени t ее скорость была равна v¯. Поскольку скорость - это касательный к траектории вектор, ее можно представить в следующем виде:

Здесь v - длина вектора v¯, а u t ¯ - единичный вектор скорости.

Чтобы вычислить вектор полного ускорения в момент времени t, необходимо найти производную скорости по времени. Имеем:

a¯ = dv¯ / dt = d (v × u t ¯) / dt

Поскольку модуль скорости и единичный вектор изменяются со временем, то, пользуясь правилом нахождения производной от произведения функций, получаем:

a¯ = dv / dt × u t ¯ + d (u t ¯) / dt × v

Первое слагаемое в формуле называется тангенциальной, или касательной компонентой ускорения, второе слагаемое - это нормальное ускорение.

Касательное ускорение

Еще раз запишем формулу для вычисления касательного ускорения:

a t ¯ = dv / dt × u t ¯

Это равенство означает, что тангенциальное (касательное) ускорение направлено так же, как вектор скорости в любой точке траектории. Оно численно определяет изменение модуля скорости. Например, в случае прямолинейного движения состоит только из касательной составляющей. Нормальное ускорение при таком типе перемещения равно нулю.

Причиной появления величины a t ¯ является воздействие внешней силы на движущееся тело.

В случае вращения с постоянным угловым ускорением α тангенциальная составляющая ускорения может быть вычислена по следующей формуле:

Здесь r - это радиус вращения рассматриваемой материальной точки, для которой вычисляется величина a t .

Нормальное или центростремительное ускорение

Теперь выпишем еще раз вторую компоненту полного ускорения:

a c ¯ = d (u t ¯) / dt × v

Из геометрических соображений можно показать, что производная единичного касательного к траектории вектора по времени равна отношению модуля скорости v к радиусу r в момент времени t. Тогда выражение выше запишется так:

Эта формула нормального ускорения свидетельствует, что оно, в отличие от касательной компоненты, не зависит от изменения скорости, а определяется квадратом модуля самой скорости. Также a c возрастает с уменьшением радиуса вращения при постоянной величине v.

Нормальное ускорение называют центростремительным потому, что оно направлено от центра масс вращающегося тела к оси вращения.

Причиной появления этого ускорения является центральная компонента воздействующей на тело силы. Например, в случае вращения планет вокруг нашего Солнца центростремительной силой является гравитационное притяжение.

Нормальное ускорение тела изменяет только направление скорости. Оно не способно изменить ее модуль. Этот факт является важным его отличием от касательной компоненты полного ускорения.

Поскольку центростремительное ускорение возникает всегда, когда вектор скорости поворачивается, то оно существует также в случае равномерного вращения по окружности, при котором тангенциальное ускорение равно нулю.

На практике ощутить на себе влияние нормального ускорения можно, если находиться в машине, когда она совершает затяжной поворот. В этом случае пассажиров прижимает к противоположной направлению поворота двери автомобиля. Это явление - результат действия двух сил: центробежной (смещение пассажиров со своих мест) и центростремительной (давление на пассажиров со стороны двери автомобиля).

Модуль и направление полного ускорения

Итак, мы выяснили, что тангенциальная компонента рассматриваемой физической величины направлена по касательной к траектории движения. В свою очередь, нормальная компонента перпендикулярна траектории в данной точке. Это означает, что две компоненты ускорения перпендикулярны друг другу. Их векторное сложение дает вектор полного ускорения. Вычислить его модуль можно по следующей формуле:

a = √(a t 2 + a c 2)

Направление вектора a¯ можно определить как относительно вектора a t ¯, так и относительно a c ¯. Для этого следует использовать соответствующую тригонометрическую функцию. Например, угол между полным и нормальным ускорениями равен:

Решение задачи на определение центростремительного ускорения

Колесо, которое имеет радиус 20 см, раскручивается с угловым ускорением 5 рад/с 2 в течение 10 секунд. Необходимо определить нормальное ускорение точек, находящихся на периферии колеса, через указанное время.

Для решения задачи воспользуемся формулой связи между тангенциальным и угловым ускорениями. Получаем:

Поскольку равноускоренное движение длилось в течение времени t = 10 секунд, то приобретенная за это время линейная скорость была равна:

v = a t × t = α × r × t

Полученную формулу подставляем в соответствующее выражение для нормального ускорения:

a c = v 2 / r = α 2 × t 2 × r

Остается подставить известные значения в это равенство и записать ответ: a c = 500 м/с 2 .

Ускорение точки для всех 3-х способов ускорения движения

Ускорение точки характеризует быстроту изменения модуля и направления скорости точки.

1. Ускорение точки при задании ее движения векторным способом

вектор ускорения точки равен первой производной от скорости или второй производной от радиуса-вектора точки по времени. Вектор ускорения направлен в сторону вогнутости кривой

2. Ускорение точки при задании ее движения координатным способом

Модуль и направление вектора ускорения определяются из соотношений:

3. Определение ускорения при задании ее движения естественным способом

Естественные оси и естественный трехгранник

Естественные оси. Кривизна характеризует степень искривленности (изогнутости) кривой. Так, окружность имеет постоянную кривизну, которую измеряют величиной K, обратной радиусу,

Чем больше радиус, тем меньше кривизна, и наоборот. Прямую линию можно рассматривать как окружность с бесконечно большим радиусом и кривизной, равной нулю. Точка представляет окружность радиусом R = 0 и имеет бесконечно большую кривизну.

Произвольная кривая имеет переменную кривизну. В каждой точке такой кривой можно подобрать окружность радиусом, кривизна которой равна кривизне кривой в данной точке М (рис. 9.2). Величина называется радиусом кривизны в данной точке кривой. Ось, направленная по касательной в сторону движения, и ось, направленная по радиусу к центру кривизны и называемая нормалью, образуют естественные оси координат.

Нормальное и касательное ускорение точки

При естественном способе задания движения ускорение точки равно геометрической сумме двух векторов, один из которых направлен по главной нормали и называется нормальным ускорением, а второй направлен по касательной и называется касательным ускорением точки.

Проекция ускорения точки на главную нормаль равна квадрату модуля скорости тоски, деленному на радиус кривизны траектории в соответствующей точке. Нормальное ускорение точки всегда направлено к центру кривизны траектории и равно по модулю этой проекции.

Изменение скорости по модулю характеризуется касательным (тангенциальным) ускорением.

т.е. проекция ускорения точки на касательную равна второй производной от дуговой координаты точки по времени или первой производной от алгебраической величины скорости точки по времени.

Эта проекция имеет знак плюс, если направления касательного ускорения и орта совпадают, и знак минус, если они противоположны.

Таким образом, в случае естественного способа задания движения, когда известны траектория точки а, следовательно, ее радиус кривизны? в любой точке и уравнение движения, можно найти проекции ускорения точки на естественные оси:

Если a > 0 и > 0 или a < 0 и < 0, то движение ускоренное и вектор а направлен в сторону вектора скорости. Если а < 0 и > 0 или а > 0 и < 0, то движение замедленное и вектор а направлен в сторону, противоположную вектору скорости

Частные случаи.

1. Если точка движется прямолинейно и неравномерно, то = , и,следовательно, = 0, a = a.

2. Если точка движется прямолинейно и равномерно, = 0, a = 0 и a = 0.

3. Если точка движется по криволинейной траектории равномерно, то а = 0 и а = . При равномерном криволинейном движении точки закон движения имеет вид s = t. Положительное направление отсчета целесообразно назначать в задачах в зависимости от конкретных условий. В случае, когда 0 = 0, получаем = gt и. Часто в задачах используется (при падении тела с высоты Н без начальной скорости) формула

Вывод: нормальное ускорение существует лишь при криволинейном

32. Классификация движения точки по её ускорению

если в течение некоторого промежутка времени нормальное и касательное ускорения точки равны нулю, то в течение этого промежутка не измениться ни направление, ни модуль скорости, т.е. точка движется прямолинейно равномерно и ее ускорение равно нулю.

если в течение некоторого промежутка времени не равно нулю нормальное ускорение и равно нулю касательное ускорение точки, то происходит изменение направления скорости без изменения ее модуля, т.е. точка движется криволинейно равномерно и модуль ускорения.

Если в отдельный момент времени, то точка не движется равномерно, а в этот момент времени модуль ее скорости имеет максимум, минимум или наименьшую быстроту монотонного изменения.

если в течение некоторого промежутка времени равно нулю нормальное ускорение точки и не равно нулю касательное, то не изменяется направление скорости, а изменяется ее модуль, т.е. точка движется по прямой неравномерно. Модуль ускорения точки в этом случае

При этом если направление векторов скорости и совпадают, то движение точки ускоренное, а если не совпадают, то движение точки замедленное.

Если в некоторый момент времени, то точка не движется прямолинейно, а проходит точку перегиба траектории или модуль ее скорости обращается в нуль.

Если в течение некоторого промежутка времени ни нормальное, ни касательное ускорения не равны нулю, то изменяется как направление, так и модуль ее скорости, т.е. точка совершает криволинейное неравномерное движение. Модуль ускорения точки

при этом если направление векторов скорости и совпадают, то движение ускоренное, а если противоположны, то движение замедленное.

Если модуль касательного ускорения постоянен, т.е. , то модуль скорости точки изменяется пропорционально времени, т.е. точка совершает равнопеременное движение. И тогда

Формула скорости равнопеременного движения точки;

Уравнение равнопеременного движения точки

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

Рис. 1.8. Среднее ускорение. В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Перемеще́ние (в кинематике) - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещениемназывают вектор, характеризующий это изменение. Обладает свойством аддитивности.

Ско́рость (часто обозначается , от англ. velocity или фр. vitesse) - векторная физическая величина, характеризующая быстротуперемещения и направления движения материальной точки в пространстве относительно выбранной системы отсчёта (например, угловая скорость).

Ускоре́ние (обычно обозначается , в теоретической механике ) - производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

    Сила. Масса. Законы Ньютона.

Си́ла - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций.

Ма́сса (от греч. μάζα) - скалярная физическая величина, одна из важнейших величин в физике. Первоначально (XVII-XIX века) она характеризовала «количество вещества» в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства - вес. Тесно связана с понятиями «энергия» и «импульс» (по современным представлениям - масса эквивалентна энергии покоя).

Первый закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

Третий закон Ньютона

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

    Импульс. Закон сохранения импульса. Упругие и неупругие удары.

И́мпульс (Количество движения) - векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

4. Виды механической энергии. Работа. Мощность. Закон сохранения энергии.

В механике различают два вида энергии: кинетическую и потенциальную.

Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (E n = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы.

Так, для груза весом P, поднятого на высоту h, потенциальная энергия будет равна E n = Ph (E n = 0 при h = 0); для груза, прикрепленного к пружине, E n = kΔl 2 / 2, где Δl - удлинение (сжатие) пружины, k – ее коэффициент жесткости (E n = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (E n = 0 при r → ∞).

Термин "работа" в механике имеет два смысла: работа как процесс, при котором сила перемещает тело, действуя под углом, отличном от 90°; работа - физическая величина, равная произведению силы, перемещения и косинуса угла между направлением действия силы и перемещением:

Работа равна нулю, когда тело движется по инерции (F = 0), когда нет перемещения (s = 0) или когда угол между перемещением и силой равен 90° (cos а = 0). Единицей работы в СИ служит джоуль (Дж).

1 джоуль - это такая работа, которая совершается силой 1 Н при перемещении тела на 1 м по линии действия силы. Для определения быстроты совершения работы вводят величину "мощность".

Мо́щность - физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени :

и мгновенную мощность в данный момент времени:

Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы.

В системе СИ единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Зако́н сохране́ния эне́ргии - фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системыможет быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Координата (линейная, угловая).

2)Перемещение ( ) – вектор, соединяющий начальную точку траектории с конечной.

3) Путь () – расстояние пройденное телом от начальной точки до конечной.

4) Линейная скорость:

4.1) Мгновенная.

Скоростью (мгновенной скоростью) движения называется векторная величина, равная отношению малого перемещения к бесконечно малому промежутку времени, за которое это перемещение производится

В проекциях: U x =

4.2) Средняя

Средняя (путевая) скорость - это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден:

Путевая скорость:

Средняя путевая скорость, в отличие от мгновенной скорости не является векторной величиной.

Можно также ввести среднюю скорость по перемещению , которая будет вектором, равным отношению перемещения ко времени, за которое оно совершено:

Скорость перемещения:

Средняя скорость в общем виде:

5)Линейное ускорение:

5.1) Мгновенная

Мгновенным ускорением называется векторная величина, равная отношению малого изменения скорости к малому промежутку времени, за который происходило это изменение:

Ускорение характеризует быстроту вектора в данной точке пронстранства.

5.2) Средняя

Среднее ускорение – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

;

Изменение скорости:

Нормальная и тангенциальная составляющие ускорения.

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Направление вектора тангенциального ускорения τ) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.



Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения. Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

Вопрос 2. Описание движения материальной точки (частные случи: равномерное движение по окружности, прямолинейное равномерное движение, равнопеременное движение по окружности).

Равномерное движение по окружности.

Равномерное движение по окружности – это простейший пример криволинейного движения . Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость .

При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v (вэ) = const, а изменяется только направление вектора скорости . Тангенциальное ускорение в этом случае отсутствует (a r = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение а ЦС. В каждой точке траектории вектор центростремительного ускорения направлен к центру окружности по радиусу.

Модуль центростремительного ускорения равен
a ЦС =v 2 / R
Где v – линейная скорость, R – радиус окружности

Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус. Угол поворота измеряется в радианах.

Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:
ω = φ / t
Единица измерения угловой скорости – радиан в секунду [рад/с]

Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности.

v = = = Rω или v = Rω

Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности. Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.
n = 1 / T

T = 2π / ω
То есть угловая скорость равна

ω = 2π / T = 2πn
Центростремительное ускорение можно выразить через период Т и частоту обращения n:
a ЦС = (4π 2 R) / T 2 = 4π 2 Rn 2