Посчитать стандартное отклонение онлайн. Среднеквадратическое (стандартное) отклонение

Среднеквадратическое или стандартное отклонение - статистический показатель, оценивающий величину колебаний числовой выборки вокруг ее среднего значения. Практически всегда основное количество величин распределяется в пределе плюс-минус одно стандартное отклонение от среднего значения.

Определение

Среднеквадратическое отклонение - это квадратный корень из среднего арифметического значения суммы квадратов отклонений от среднего значения. Строго и математично, но абсолютно непонятно. Это словесное описание формулы расчета стандартного отклонения, но чтобы понять смысл этого статистического термина, давайте разберемся со всем по порядку.

Представьте себе тир, мишень и стрелка. Снайпер стреляет в стандартную мишень, где попадание в центр дает 10 баллов, в зависимости от удаления от центра количество баллов снижается, а попадание в крайние области дает всего 1 балл. Каждый выстрел стрелка - это случайное целое значение от 1 до 10. Изрешеченная пулями мишень - прекрасная иллюстрация распределения случайной величины.

Математическое ожидание

Наш начинающий стрелок долго практиковался в стрельбе и заметил, что он попадает в разные значения с определенной вероятностью. Допустим, на основании большого количества выстрелов он выяснил, что попадает в 10 с вероятностью 15 %. Остальные значения получили свои вероятности:

  • 9 - 25 %;
  • 8 - 20 %;
  • 7 - 15 %;
  • 6 - 15 %;
  • 5 - 5 %;
  • 4 - 5 %.

Сейчас он готовится сделать очередной выстрел. Какое значение он выбьет с наибольшей вероятностью? Ответить на этот вопрос нам поможет математическое ожидание. Зная все эти вероятности, мы можем определить наиболее вероятный результат выстрела. Формула для вычисления математического ожидания довольно проста. Обозначим значение выстрела как C, а вероятность как p. Математическое ожидание будет равно сумме произведение соответствующих значений и их вероятностей:

Определим матожидание для нашего примера:

  • M = 10 × 0,15 + 9 × 0,25 + 8 × 0,2 + 7 × 0,15 + 6 × 0,15 + 5 × 0,05 + 4 × 0,05
  • M = 7,75

Итак, наиболее вероятно, что стрелок попадет в зону, дающую 7 очков. Эта зона будет самой простреленной, что является прекрасным результатом наиболее частого попадания. Для любой случайной величины показатель матожидания означает наиболее встречаемое значение или центр всех значений.

Дисперсия

Дисперсия - еще один статистический показатель, иллюстрирующий нам разброс величины. Наша мишень густо изрешечена пулями, а дисперсия позволяет выразить этот параметр численно. Если математическое ожидание демонстрирует центр выстрелов, то дисперсия - их разброс. По сути, дисперсия означает математическое ожидание отклонений значений от матожидания, то есть средний квадрат отклонений. Каждое значение возводится в квадрат для того, чтобы отклонения были только положительными и не уничтожали друг друга в случае одинаковых чисел с противоположными знаками.

D[X] = M − (M[X]) 2

Давайте рассчитаем разброс выстрелов для нашего случая:

  • M = 10 2 × 0,15 + 9 2 × 0,25 + 8 2 × 0,2 + 7 2 × 0,15 + 6 2 × 0,15 + 5 2 × 0,05 + 4 2 × 0,05
  • M = 62,85
  • D[X] = M − (M[X]) 2 = 62,85 − (7,75) 2 = 2,78

Итак, наше отклонение равно 2,78. Это означает, что от области на мишени со значением 7,75 пулевые отверстия разбросаны на 2,78 балла. Однако в чистом виде значение дисперсии не используется - в результате мы получаем квадрат значения, в нашем примере это квадратный балл, а в других случаях это могут быть квадратные килограммы или квадратные доллары. Дисперсия как квадратная величина не информативна, поэтому она представляет собой промежуточный показатель для определения среднеквадратичного отклонения - героя нашей статьи.

Среднеквадратическое отклонение

Для превращения дисперсии в логично понятные баллы, килограммы или доллары используется среднеквадратическое отклонение, которое представляет собой квадратный корень из дисперсии. Давайте вычислим его для нашего примера:

S = sqrt(D) = sqrt(2,78) = 1,667

Мы получили баллы и теперь можем использовать их для связки с математически ожиданием. Наиболее вероятный результат выстрела в этом случае будет выражен как 7,75 плюс-минус 1,667. Этого достаточно для ответа, но так же мы можем сказать, что практически наверняка стрелок попадет в область мишени между 6,08 и 9,41.

Стандартное отклонение или сигма - информативный показатель, иллюстрирующий разброс величины относительно ее центра. Чем больше сигма, тем больший разброс демонстрирует выборка. Это хорошо изученный коэффициент и для нормального распределения известно занимательное правило трех сигм. Установлено, что 99,7 % значений нормально распределенной величины лежат в области плюс-минус трех сигм от среднего арифметического.

Рассмотрим на примере

Волатильность валютной пары

Известно, что на валютном рынке широко используются приемы математической статистики. Во многих торговых терминалах встроены инструменты для подсчета волатильности актива, который демонстрирует меру изменчивости цены валютной пары. Конечно, финансовые рынки имеют свою специфику расчета волатильности как то цены открытия и закрытия биржевых площадок, но в качестве примера мы можем подсчитать сигму для последних семи дневных свечей и грубо прикинуть недельную волатильность.

Наиболее волатильным активом рынка Форекс по праву считается валютная пара фунт/иена. Пусть теоретически в течение недели цена закрытия токийской биржи принимала следующие значения:

145, 147, 146, 150, 152, 149, 148.

Введем эти данные в калькулятор и подсчитаем сигму, равную 2,23. Это означает, что в среднем курс японской иены изменялся на 2,23 иены ежедневно. Если бы все было так замечательно, трейдеры заработали бы на таких движениях миллионы.

Заключение

Стандартное отклонение используется в статистическом анализе числовых выборок. Это полезный коэффициент позволяющий оценить разброс данных, так как два набора с, казалось бы, одинаковым средним значением могут быть абсолютно разными по разбросу величин. Используйте наш калькулятор для поиска сигм небольших выборок.

При статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

Среднеквадратическое отклонение:

Стандартное отклонение (оценка среднеквадратического отклонения случайной величины Пол, стены вокруг нас и потолок,x относительно её математического ожидания на основе несмещённой оценки её дисперсии):

где - дисперсия ; - Пол, стены вокруг нас и потолок,i -й элемент выборки; - объём выборки; - среднее арифметическое выборки:

Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. Однако оценка на основе оценки несмещённой дисперсии является состоятельной .

Правило трёх сигм

Правило трёх сигм () - практически все значения нормально распределённой случайной величины лежат в интервале . Более строго - не менее чем с 99,7 % достоверностью значение нормально распределенной случайной величины лежит в указанном интервале (при условии, что величина истинная, а не полученная в результате обработки выборки).

Если же истинная величина неизвестна, то следует пользоваться не , а Пол, стены вокруг нас и потолок,s . Таким образом, правило трёх сигм преобразуется в правило трёх Пол, стены вокруг нас и потолок,s .

Интерпретация величины среднеквадратического отклонения

Большое значение среднеквадратического отклонения показывает большой разброс значений в представленном множестве со средней величиной множества; маленькое значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

Например, у нас есть три числовых множества: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8}. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения - значения внутри множества сильно расходятся со средним значением.

В общем смысле среднеквадратическое отклонение можно считать мерой неопределенности. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.

Практическое применение

На практике среднеквадратическое отклонение позволяет определить, насколько значения в множестве могут отличаться от среднего значения.

Климат

Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой внутри континента. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

Спорт

Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

Технический анализ

См. также

Литература

* Боровиков, В. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов / В. Боровиков. - СПб. : Питер, 2003. - 688 с. - ISBN 5-272-00078-1 .

Кроме математического ожидания случайной величины которое. определяет положение центра распределения вероятностей, количественной характеристикой распределения случайной величины является дисперсия случайной величины

Дисперсию будем обозначать D [х] или .

Слово «дисперсиям означает рассеивание. Дисперсия является числовой характеристикой рассеивания, разброса значений случайной величины относительно ее математического ожидания.

Определение 1. Дисперсией случайной величины называется матемйтическое ожидание квадрата разности случайной величины и ее математического ожидания.(т. е. математическое ожидание квадрата соответствующей центрированной, случайной величины):

Дисперсия имеет размерность квадрата случайной величины. Иногда, для характеристики рассеивания, удобнее пользоваться величиной, размерйость которой совпадает с размерностью случайной величины. Такая величина - среднеквадратичное отклонение.

Определение 2. Среднеквадратичным отклонением случайной величины называется корень квадратный из ее дисперсии:

или в развернутом виде

Среднеквадратичное отклонение обозначают также

Замечание 1. При вычислении дисперсии формулу (1) бывает удобно преобразовать так:

т. е. дисперсия равна разности математического ожидания квадрата случайной величины и квадрата математического ожидания случайной величины.

Пример 1. Производится один выстрел по объекту. Вероятность попадания . Определить математическое ожидание, дисперсию и среднеквадратичное отклонение.

Решение. Строим таблицу значений числа попаданий

Следовательно,

Чтобы представить смысл понятия дисперсии и среднеквадратичного отклонения как характеристики рассеивания случайной величины, рассмотрим примеры.

Пример 2. Случайная величина задана следующим законом распределения (см. таблицу и рис. 413):

Пример 3. Случайная величина задана следующим законом распределения (см. таблицу и рис. 414):

Определить: 1) математическое ожидание, 2) дисперсию, 3) среднеквадратичное отклонение.

Рассеивание, разброс случайной величины в первом примере меньше рассеивания случайной величины во втором примере (см. рис. 414 и 415). Дисперсии этих величин соответственно равны 0,6 и 2,4.

Пример 4; Случайная величина задана следующим законом распределения (см. таблицу и рис. 415):

Определить: 1) математическое ожидание, 2) дисперсию, 3) среднеквадратичное отклонение.

Основными критериями разнообразия признака в статистической совокупности являются: лимит, амплитуда, среднее квадратическое отклонение, коэффициент осцилляции и коэффициент вариации. На предыдущем занятии обсуждалось, что средние величины дают лишь обобщающую характеристику изучаемого признака в совокупности и не учитывают значения отдельных его вариант: минимальное и максимальное значения, выше среднего, ниже среднего и т.д.

Пример. Средние величины двух разных числовых последовательностей: -100; -20; 100; 20 и 0,1; -0,2; 0,1 абсолютно одинаковы и равны О. Однако, диапазоны разброса данных этих последовательностей относительного среднего значения сильно различны.

Определение перечисленных критериев разнообразия признака прежде всего осуществляется с учетом его значения у отдельных элементов статистической совокупности.

Показатели измерения вариации признака бывают абсолютные и относительные . К абсолютным показателям вариации относят: размах вариации, лимит, среднее квадратическое отклонение, дисперсию. Коэффициент вариации и коэффициент осцилляции относятся к относительным показателям вариации.

Лимит (lim)– это критерий, который определяется крайними значениями вариант в вариационном ряду. Другими словами, данный критерий ограничивается минимальной и максимальной величинами признака:

Амплитуда (Am) или размах вариации – это разность крайних вариант. Расчет данного критерия осуществляется путем вычитания из максимального значения признака его минимального значения, что позволяет оценить степень разброса вариант:

Недостатком лимита и амплитуды как критериев вариабельности является то, что они полностью зависят от крайних значений признака в вариационном ряду. При этом не учитываются колебания значений признака внутри ряда.

Наиболее полную характеристику разнообразия признака в статистической совокупности дает среднее квадратическое отклонение (сигма), которое является общей мерой отклонения вариант от своей средней величины. Среднее квадратическое отклонение часто называют также стандартным отклонением .

В основе среднего квадратического отклонения лежит сопоставление каждой варианты со средней арифметической данной совокупности. Так как в совокупности всегда будут варианты как меньше, так и больше, чем она, то сумма отклонений , имеющих знак "", будет погашаться суммой отклонений, имеющих знак "", т.е. сумма всех отклонений равна нулю. Для того, чтобы избежать влияния знаков разностей берут отклонения вариант от среднего арифметического в квадрате, т.е. . Сумма квадратов отклонений не равняется нулю. Чтобы получить коэффициент, способный измерить изменчивость, берут среднее от суммы квадратов – это величина носит название дисперсии:

По смыслу, дисперсия – это средний квадрат отклонений индивидуальных значений признака от его средней величины. Дисперсия квадрат среднего квадратического отклонения .

Дисперсия является размерной величиной (именованной). Так, если варианты числового ряда выражены в метрах, то дисперсия дает квадратные метры; если варианты выражены в килограммах, то дисперсия дает квадрат этой меры (кг 2), и т.д.

Среднее квадратическое отклонение – квадратный корень из дисперсии:

В том случае, если число элементов совокупности , то при расчете дисперсии и среднего квадратического отклонения в знаменателе дроби вместо необходимо ставить .

Расчет среднего квадратического отклонения можно разбить на шесть этапов, которые необходимо осуществить в определенной последовательности:

Применение среднеквадратического отклонения:

а) для суждения о колеблемости вариационных рядов и сравнительной оценки типичности (представительности) средних арифметических величин. Это необходимо в дифференциальной диагностике при определении устойчивости признаков.

б) для реконструкции вариационного ряда, т.е. восстановления его частотной характеристики на основе правила «трех сигм» . В интервале (М±3σ) находится 99,7% всех вариант ряда, в интервале (М±2σ) - 95,5% и в интервале (М±1σ) - 68,3% вариант ряда (рис.1).

в) для выявления «выскакивающих» вариант

г) для определения параметров нормы и патологии с помощью сигмальных оценок

д) для расчета коэффициента вариации

е) для расчета средней ошибки средней арифметической величины.

Для характеристики любой генеральной совокупности, имеющей нормальный тип распределения , достаточно знать два параметра: среднюю арифметическую и среднее квадратическое отклонение.

Рисунок 1. Правило «трех сигм»

Пример.

В педиатрии среднеквадратическое отклонение используется для оценки физического развития детей путем сравнения данных конкретного ребенка с соответствующими стандартными показателями. За стандарт принимаются средние арифметические показатели физического развития здоровых детей. Сравнение показателей со стандартами проводят по специальным таблицам, в которых стандарты приводятся вместе с соответствующими им сигмальными шкалами. Считается, что если показатель физического развития ребенка находится в пределах стандарт (среднее арифметическое) ±σ, то физическое развитие ребенка (по этому показателю) соответствует норме. Если показатель находится в пределах стандарт ±2σ, то имеется незначительное отклонение от нормы. Если показатель выходит за эти границы, то физическое развитие ребенка резко отличается от нормы (возможна патология).

Кроме показателей вариации, выраженных в абсолютных величинах, в статистическом исследовании используются показатели вариации, выраженные в относительных величинах. Коэффициент осцилляции - это отношение размаха вариации к средней величине признака. Коэффициент вариации - это отношение среднего квадратического отклонения к средней величине признака. Как правило, эти величины выражаются в процентах.

Формулы расчета относительных показателей вариации:

Из приведенных формул видно, что чем больше коэффициент V приближен к нулю, тем меньше вариация значений признака. Чем больше V , тем более изменчив признак.

В статистической практике наиболее часто применяется коэффициент вариации. Он используется не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному). Арифметически отношение σ и средней арифметической нивелирует влияние абсолютной величины этих характеристик, а процентное соотношение делает коэффициент вариации величиной безразмерной (неименованной).

Полученное значение коэффициента вариации оценивается в соответствии с ориентировочными градациями степени разнообразия признака:

Слабое - до 10 %

Среднее - 10 - 20 %

Сильное - более 20 %

Использование коэффициента вариации целесообразно в случаях, когда приходится сравнивать признаки разные по своей величине и размерности.

Отличие коэффициента вариации от других критериев разброса наглядно демонстрирует пример .

Таблица 1

Состав работников промышленного предприятия

На основании приведенных в примере статистических характеристик можно сделать вывод об относительной однородности возрастного состава и образовательного уровня работников предприятия при низкой профессиональной устойчивости обследованного контингента. Нетрудно заметить, что попытка судить об этих социальных тенденциях по среднему квадратическому отклонению привела бы к ошибочному заключению, а попытка сравнения учетных признаков «стаж работы» и «возраст» с учетным признаком «образование» вообще была бы некорректной из-за разнородности этих признаков.

Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.

Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.

Абсолютные показатели вариации включают:

Размах вариации (R)

Размах вариации — это разность между максимальным и минимальным значениями признака

Он показывает пределы, в которых изменяется величина признака в изучаемой .

Пример . Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.
Решение: размах вариации = 9 — 2 = 7 лет.

Для обобщенной характеристики различий в значениях признака вычисляют средние показатели вариации, основанные на учете отклонений от средней арифметической. За отклонение от средней принимается разность .

При этом во избежании превращения в нуль суммы отклонений вариантов признака от средней (нулевое свойство средней) приходится либо не учитывать знаки отклонения, то есть брать эту сумму по модулю , либо возводить значения отклонений в квадрат

Среднее линейное и квадратическое отклонение

Среднее линейное отклонение — это из абсолютных отклонений отдельных значений признака от средней.

Среднее линейное отклонение простое:

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.

В нашем примере: лет;

Ответ: 2,4 года.

Среднее линейное отклонение взвешенное применяется для сгруппированных данных:

Среднее линейное отклонение в силу его условности применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе качества продукции с учетом технологических особенностей производства).

Среднее квадратическое отклонение

Наиболее совершенной характеристикой вариации является среднее квадратическое откложение, которое называют стандартом (или стандартным отклонение). () равно квадратному корню из среднего квадрата отклонений отдельных значений признака от :

Среднее квадратическое отклонение простое:

Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:

Между средним квадратическим и средним линейным отклонениями в условиях нормального распределения имеет место следующее соотношение: ~ 1,25.

Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.

Дисперсия

Дисперсия - представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины.

Дисперсия простая:

В нашем примере:

Дисперсия взвешенная:

Более удобно вычислять дисперсию по формуле:

которая получается из основной путем несложных преобразований. В этом случае средний квадрат отклонений равен средней из квадратов значений признака минус квадрат средней.

Для несгрупиированных данных:

Для сгруппированных данных:

Вариация альтернативного признака заключается в наличии или отсутствии изучаемого свойства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями: наличие у единицы изучаемого свойства обозначается единицей (1), а его отсутствие — нулем (0). Долю единиц, обладающих изучаемым признаком, обозначают буквой , а долю единиц, не обладающих этим признаком — через . Учитывая, что p + q = 1 (отсюда q = 1 — p), а среднее значение альтернативного признака равно

,

средний квадрат отклонений

Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным свойством (), на долю единиц, данным свойством не обладающих ().

Максимальное значение средний квадрат отклонения (дисперсия) принимает в случае равенства долей, т.е. когда т.е. . Нижняя граница этого показателя равна нулю, что соответствует ситуации, при которой в совокупности отсутствует вариация. Среднее квадратическое отклонение альтернативного признака:

Так, если в изготовленной партии 3% изделий оказались нестандартными, то дисперсия доли нестандартных изделий , а среднее квадратическое отклонение или 17,1%.

Среднее квадратическое отклонение равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической.

Относительные показатели вариации

Относительные показатели вариации включают:

Сравнение вариации нескольких совокупностей по одному и тому же признаку, а тем более по различным признакам с помощью абсолютных показателей не представляется возможным. В этих случаях для сравнительной оценки степени различия строят относительные показатели вариации. Они вычисляются как отношения абсолютных показателей вариации к средней:

Рассчитываются и другие относительные характеристики. Например, для оценки вариации в случае асимметрического распределения вычисляют отношение среднего линейного отклонения к медиан

так как благодаря свойству медианы сумма абсолютных отклонений признака от ее величины всегда меньше, чем от любой другой.

В качестве относительной меры рассеивания, оценивающей вариацию центральной части совокупности, вычисляют относительное квартильное отклонение , где — средний квартиль полусуммы разности третьего (или верхнего) квартиля () и первого (или нижнего) квартиля ().

На практике чаще всего вычисляют коэффициент вариации. Нижней границей этого показателя является нуль, верхнего предела он не имеет, однако известно, что с увеличением вариации признака увеличивается и его значение. Коэффициент вариации является в известном смысле критерием однородности совокупности (в случае нормального распределения).

Рассчитаем коэффициент вариации на основе среднего квадратического отклонения для следующего примера. Расход сырья на единицу продукции составил (кг): по одной технологии при , а по другой — при. Непосредственное сравнение величины средних квадратических отклонений могло бы привести к неверному представлению о том, что вариация расхода сырья по первой технологии интенсивнее, чем по второй (. Относительная мера вариации ( позволяет сделать противоположный вывод

Пример расчета показателей вариации

На этапе отбора кандидатов для участия в осуществлении сложного проекта фирма объявлила конкурс профессионалов. Распределение претендентов по опыту работы показало средующие результаты:

Вычислим средний производственный опыт работы, лет

Рассчитаем дисперсию по продолжительности опыта работы

Такой же результат получается, если использовать для расчета другую формулу расчета дисперсии

Вычислим среднее квадратическое отклонение, лет:

Определим коэффициент вариации, %:

Правило сложения дисперсий

Для оценки влияния факторов, определяющих вариацию, используют прием группировки: совокупность разбивают на группы, выбрав в качестве группировочного признака один из определяющих факторов. Тогда наряду с общей дисперсией, рассчитанной по всей совокупности, вычисляют внутигрупповую дисперсию (или среднюю из групповых) и межгрупповую дисперсию (или дисперсию групповых средних).

Общая дисперсия характеризует вариацию признака во всей совокупности, сложившуюся под влиянием всех факторов и условий.

Межгрупповая дисперсия измеряет систематическую вариацию, обусловленную влиянием фактора, по которому произведена группировка:

Внутригрупповая дисперсия оценивает вариацию признака, сложившуюся по влиянием других, неучитываемых в данном исследовании факторов и независящую от фактора группировки. Она определяется как средняя из групповых дисперсий.

Все три дисперсии () связаны между собой следующим равенством, которое известно как правило сложения дисперсий:

на этом соотношении строятся показатели, оценивающие влияние признака группировки на образование общей вариации. К ним относятся эмпирический коэффициент детерминации () и эмпирическое корреляционное отношение ()

() характеризует долю межгрупоовой дисперсии в общей дисперсии:

и показывает насколько вариация признака в совокупности обусловлена фактором группировки.

Эмпирическое корреляционное отношение (!!\eta = \sqrt{ \frac{\delta^2}{\sigma^2} }

оценивает тесноту связи между изучаемым и группировочным признаками. Предельными значениями являются нуль и единица. Чем ближе к единице, тем теснее связь.

Пример. Стоимость 1 кв.м общей площади (усл.ед) на рынке жилья по десяти 17-м домам улучшенной планировки составляла:

При этом известно, что первые пять домов были построены вблизи делового центра, а остальные — на значительном расстоянии от него.

Для рассчета общей дисперсии вычислим среднюю стоимость 1 кв.м. общей площади: Общую дисперсию определим по формуле:

Вычислим среднюю стоимость 1 кв.м. и дисперсию по этому показателю для каждой группы домов, отличающихся месторасположением относительно центра города:

а) для домов, построенных вблизи центра:

б) для домов, построенных далеко от центра:

Вариация стоимости 1 кв.м. общей площади, вызванная изменением местоположения домов, определяется величиной межгрупповой дисперсии :

Вариация стоимости 1 кв.м. общей площади, обусловленная изменением остальных неучитываемых нами показателей, измеряется величиной внутригрупповой дисперсии

Найденные дисперссии в сумме дают величину общей дисперсии

Эмпирический коэффициент детерминации :

показывает, что дисперсия стоимости 1.кв.м. общей площади на рынке жилья на 81,8% объясняется различиями в расположении новостроек по отношению к деловому центру и на 18,2% — другими факторами.

Эмприческое корреляционное отношение свидетельствует о существенном влиянии на стоимость жилья месторасположения домов.

Правило сложения дисперсий для доли признака записывается так:

а три вида дисперсий доли для сгруппированных данных определяется по следующим формулам:

общая дисперсия:

Формулы межгрупповой и внутригрупповой дисперсий:

Характеристики формы распределения

Для получения представления о форме распределения используются показатели среднего уровня ( , ), показатели вариации, ассиметрии и эксцесса.

В симметричных распределениях средняя арифметическая, мода и медиана совпадают (. Если это равенство нарушается — распределение ассиметрично.

Простейшим показателем ассиметрии является разность , которая в случае правосторонней ассиметрии положительна, а при левосторонней — отрицательна.

Ассиметричное распределение

Для сравнения ассиметрии нескольких рядов вычисляется относительный показатель

В качестве обобщающих характеристик вариации используются центральные моменты распределения -го порядка , соответствующие степени, в которую возводятся отклонения отдельных значений признака от средней арифметической:

Для несгруппированных данных:

Для сгруппированных данных:

Момент первого порядка согласно свойству средней арифметической равен нулю .

Момент второго порядка является дисперсией .

Моменты третьего и четвертого порядков используются для построения показателей, оценивающих особенности формы эмпирических распределений.

С помощью момента третьего порядка измеряют степень скошенности или ассиметричности распределения.

— коэффициент ассиметрии

В симметричных распределениях , как все центральные моменты нечетного порядка.Неравенство нулю центрального момента третьего порядка указывает на асимметричность распределения. При этом, если , то асимметрия правосторонняя и относительно максимальной ординаты вытянута правая ветвь; если , то асимметрия левосторонняя (на графике это соответствует вытянутости левой ветви).

Для характеристики островершинности или плосковершинности распределения вычисляют отношение момента четвертого порядка () к среднеквадратическому отклонению в четвертой степени (). Для нормального распределения , поэтому эксцесс находят по формуле:

Для нормального распределения обращается в нуль. Для островершинных распределений , для плосковершинных .

Эксцесс распределения

Кроме показателей, рассмотренных выше, обобщающей характеристикой вариации в однородной совокупности служит определенный порядок в изменении частот распределения в соответствии с изменениями величины изучаемого признака, называемый закономерностью распределения .

Характер (тип) закономерности распределения может быть выявлен путем построения вариационного ряда на основании большого объема наблюдений, а также такого выбора числа групп и величины интегралов, при котором наиболее отчетливо могла бы проявиться закономерность.

Анализ вариационных рядов предполагает выявление характера распределения (как результата действия механизма вариации), установление функции распределения, проверку соответствия эмпирического распределения теоретическому.

Эмпирическое распределение , полученное на основе данных наблюдения, графически изображается эмпирической кривой распределения с помощью полигона.

На практике встречаются различные типы распределений, среди которых можно выделить симметричные и асимметричные, одновершинные и многовершинные.

Установить тип распределения, означает выразить механизм формирования закономерности в аналитической форме. Многим явлениям и их признакам свойственны характерные формы распределения, которые аппроксимируются соответствующими кривыми. При всем многообразии форм распределения наибольшее распространение в качестве теоретических получили нормальное распределение, распределение Пауссона, биноминальное распределение и др.

Особое место в изучении вариации принадлежит нормальному закону, благодаря его математическим свойствам. Для нормального закона выполняется правило трех сигм, по которому вариация индивидуальных значений признака находится в пределах от величины средней. При этом в границах находится около 70% всех единиц, а в пределах — 95%.

Оценка соответствия эмпирического и теоретического распределений производится с помощью критериев согласия, среди которых широко известны критерии Пирсона, Романовского, Ястремского, Колмогорова.