Виды интерферометров. Принцип действия оптических интерферометров

Оптические интерферометры применяются для изменения оптических длин волн, спектральных линий, показателя преломления поляризационных сред, абсолютных и относительных длин объектов, угловых размеров звезд для контроля качества оптических деталей и их поверхности.

Принцип действия:

Пучок света с помощью различных устройств разделяется на 2 или более когерентных пучков, которые проходят различные оптические пути, затем сводятся вместе и наблюдается результат их интерференции.

Вид интерференционной картины зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, оптической разности хода, относительной интенсивности, размеров источника, спектрального состава света.

По числу интерферометры пучков оптические интерферометры можно разделить:

Двухлучевые и многолучевые.

Многолучевые интерферометры используются как спектральные приборы, для исследования спектрального состава света.

Двухлучевые можно использовать для измерения физических технических измерений.

Майкельсона: Параллельный пучок света от источника, проходя через О1 попадает на полупрозрачную пластинку P1 и разделяет на два когерентных пучка.

Далее пучок 1 отражается от зеркала M1, 2 пучок – М2. Луч 2 повторно проходит через пластинку P1, 1 не проходит. Оба пучка проходят в направлении AO через объектив О2 и интерферирует в фокальной плоскости диафрагмы D. Наблюдаемая интерференционная картина соответствует интерференции в воздушном слое, образованным зеркалом М2 и мнимым изображением зеркала М1 в пластине P1.

Толщина воздушного слоя l (оптическая разность хода = 2l).

Если зеркало М1 расположено так, что М2 и мнимое изображение М1 параллельны, то интерференционная картина представляет собой полосы равного наклона, локализованные в фокальной плоскости объектива О2. А картина представляет собой концентрические кольца.

Полосы равного наклона образуются при освещении прозрачного слоя постоянной толщины непараллельным пучком монохроматического излучения.

Если М2 и изображение М1 образуют воздушный клин, то возникают полосы равной толщины и представляют собой параллельные линии.

Интерферометр Жамена:

Предназначен для измерения показателей преломления в газах и жидкостях.Пучок монохроматического света S после отражения передней и задней поверхности стеклянной пластинки P1 разделяется на 2 пучка S1 и S2.На пути пучков стоят 2 кюветы К1 и К2, через них пучки отражаются от Р2.Р2 повернуто относительно Р1 .

И попадают в зрительную трубу Т, где интерферируют образуя прямы полосы равного наклона.

Если одну из кювет заполнить веществом с показателем преломления n1, а вторую n2, то по смещению интерференционной картины на число полос m по сравнению с тем случаем когда 2 обе кюветы заполнены (или нет) можно определить n1 и n2,которые связывают Δn.

Δn=(m*λ)/l. Относительная погрешность измерения коэффициента преломления достигает 10 -8 .

Фабри-Перо:

В его состав входят две параллельные пластины Р1 и Р2, на обращенные друг к другу поверхности пластинок нанесены зеркальные покрытия с коэффициентом отражения от 0.85 до 0.98.Параллельный пучок света Sпадающей из объектива О1 в результате многократного отражения от зеркал обретает большое число параллельных когерентных пучков с постоянной разностью хода между соседними пучками.

h- Расстояние между зеркалами,θ- угол отражения пучков от зеркал

Интенсивность этих пучков будет различна. В результате многолучевой интерференции в фокальной плоскости l объектива О2 образуется интерференционная картина, которая имеет форму концентрических колец.Положение максимальной интерференции определяется:

Δ=mλ, m – целое число

Интерферометр Фабри-Перо применяется в качестве прибора высокой разрешающей способности.Разрешающая способность зависит от коэффициента отражения зеркал, от расстояния между зеркалами и возрастает с их увеличением.

Минимальный разрешающий интервал длин волн 5*10 -5 нм.Специальные способности интерферометра фабри-перо используются для исследования спектров в ИК, видимом и и сантиметровой частях диапазона длин волн.Разностью интерферометра ФП является оптический резонатор лазеров, излучающая среда которых располагается между зеркалами.

Если допустить, что между зеркалами нормально к ним располагается ЭМ плоская волна, то в результате отражения ее от зеркал образуется стоячие волны, возникает резонанс.

h – целое число полуволн, m- продольный индекс колебаний или продольная мода.

Собственные частоты оптического резонатора образуют арифметическую прогрессию, которая равна – c/2*h (шаг)

Разность частот между двумя соседними продольными модами в излучении лазера зависит от расстояния между зеркалами резонатора:

Перемещение одного из зеркал на Δf приводит к изменению разностной частоты:

Δf=с* Δh/2h 2 .

Оно может быть измерено с помощью фотоприемника.

Оптические интерферометры применяются для изменения оптических длин волн, спектральных линий, показателя преломления поляризационных сред, абсолютных и относительных длин объектов, угловых размеров звезд для контроля качества оптических деталей и их поверхности.

Принцип действия:

Пучок света с помощью различных устройств разделяется на 2 или более когерентных пучков, которые проходят различные оптические пути, затем сводятся вместе и наблюдается результат их интерференции.

Вид интерференционной картины зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, оптической разности хода, относительной интенсивности, размеров источника, спектрального состава света.

По числу интерферометры пучков оптические интерферометры можно разделить:

Двухлучевые и многолучевые.

Многолучевые интерферометры используются как спектральные приборы, для исследования спектрального состава света.

Двухлучевые можно использовать для измерения физических технических измерений.

Майкельсона : Параллельный пучок света от источника, проходя через О1 попадает на полупрозрачную пластинку P1 и разделяет на два когерентных пучка.

Далее пучок 1 отражается от зеркала M1, 2 пучок – М2. Луч 2 повторно проходит через пластинку P1, 1 не проходит. Оба пучка проходят в направлении AO через объектив О2 и интерферирует в фокальной плоскости диафрагмы D. Наблюдаемая интерференционная картина соответствует интерференции в воздушном слое, образованным зеркалом М2 и мнимым изображением зеркала М1 в пластине P1.

Толщина воздушного слоя l (оптическая разность хода = 2l).

Если зеркало М1 расположено так, что М2 и мнимое изображение М1 параллельны, то интерференционная картина представляет собой полосы равного наклона, локализованные в фокальной плоскости объектива О2. А картина представляет собой концентрические кольца.

Полосы равного наклона образуются при освещении прозрачного слоя постоянной толщины непараллельным пучком монохроматического излучения.

Если М2 и изображение М1 образуют воздушный клин, то возникают полосы равной толщины и представляют собой параллельные линии.

Интерферометр Жамена:

Предназначен для измерения показателей преломления в газах и жидкостях.

Пучок монохроматического света S после отражения передней и задней поверхности стеклянной пластинки P1 разделяется на 2 пучка S1 и S2.

На пути пучков стоят 2 кюветы К1 и К2, через них пучки отражаются от Р2.

Р2 повернуто относительно Р1 . и попадают в зрительную трубу Т, где интерферируют образуя прямы полосы равного наклона.

Если одну из кювет заполнить веществом с показателем преломления n1, а вторую n2, то по смещению интерференционной картины на число полос m по сравнению с тем случаем когда 2 обе кюветы заполнены (или нет) можно определить n1 и n2,которые связывают Δn.

Относительная погрешность измерения коэффициента преломления достигает 10 -8 .

Фабри-Перо :

В его состав входят две параллельные пластины Р1 и Р2, на обращенные друг к другу поверхности пластинок нанесены зеркальные покрытия с коэффициентом отражения от 0.85 до 0.98.

Параллельный пучок света Sпадающей из объектива О1 в результате многократного отражения от зеркал обретает большое число параллельных когерентных пучков с постоянной разностью хода между соседними пучками.

h- Расстояние между зеркалами

θ- угол отражения пучков от зеркал

Интенсивность этих пучков будет различна. В результате многолучевой интерференции в фокальной плоскости l объектива О2 образуется интерференционная картина, которая имеет форму концентрических колец.

Положение максимальной интерференции определяется:

m – целое число

Интерферометр Фабри-Перо применяется в качестве прибора высокой разрешающей способности.

Разрешающая способность зависит от коэффициента отражения зеркал, от расстояния между зеркалами и возрастает с их увеличением.

Минимальный разрешающий интервал длин волн 5*10 -5 нм.

Специальные способности интерферометра фабри-перо используются для исследования спектров в ИК, видимом и и сантиметровой частях диапазона длин волн.

Разностью интерферометра ФП является оптический резонатор лазеров, излучающая среда которых располагается между зеркалами.

Если допустить, что между зеркалами нормально к ним располагается ЭМ плоская волна, то в результате отражения ее от зеркал образуется стоячие волны, возникает резонанс.

h – целое число полуволн, m- продольный индекс колебаний или продольная мода.

Собственные частоты оптического резонатора образуют арифметическую прогрессию, которая равна – c/2*h (шаг)

Разность частот между двумя соседними продольными модами в излучении лазера зависит от расстояния между зеркалами резонатора:

Перемещение одного из зеркал на Δf приводит к изменению разностной частоты:

Δf=с* Δh/2h 2 .

Оно может быть измерено с помощью фотоприемника.


В интерферометре Майкельсона используется явление интерференции в тонких пленках. Явление интерференции в данном приборе осуществляется способом деления амплитуды волны.

Что собой представляет это устройство? На массивном постаменте находится плоскопараллельная слегка покрытая серебром пластинка ($A$), расположенная под углом $45^0$ к направлению распространения лучей и два взаимно перпендикулярных плоских зеркала $C$ и $D$ (рис.1).

Рисунок 1.

Пластина B (рис.1) служит как вспомогательная, она компенсирует разность хода лучей. Световые волны распространяются от ($S$). Часть из них отражается от серебряной поверхности пластины $A$, часть проходит сквозь данную пластинку. Так происходит процесс расщепления волны света на две когерентные волны. Волны, которые проходят через пластинку отражаются от зеркал $C$ и $D$. Отраженные волны снова частично отражаются, частично проходят сквозь посеребрённую пластинку $A$. Эти волны могут интерферировать на участке $АК$. Эта интерференционная картина наблюдается в зрительную трубу. Так, на пластинке $А$ происходит деление амплитуды, фронт волн на ней сохраняется изменяется только направление его движения.

Если гипотетически плечо $DA$ развернуть на $90^0$, то зеркало $D$ попадет в положение $D"$. Между $D"$ и $С$ появляется промежуток, который может быть подобен тонкой пленке. В том случае, если зеркала $C$ и $D$ строго перпендикулярны, то наблюдаются полосы равного наклона, которые представляют собой круги. Зрительная труба в таком случае должна быть настроена на бесконечность. Если зеркала $C$ и $D$ не совсем перпендикулярные, то промежуток между нами уподобляется клину, то появляются полосы равной толщины в виде прямых полос. Зрительную трубу в этом случае фокусируют на посеребренную грань пластинки $А$.

Интерференция монохроматических волн, которые распространяются по оси интерферометра

В случае распространения волн строго по оси интерферометра оптическая разность хода лучей ($\triangle $) появляется за счет разницы в длинах плечей ($l_1\ и\ l_2\ \ $) интерферометра:

Появляющаяся при этом разность фаз равна:

При строгом расчете следует учесть изменение фаз волн при отражении от зеркал и преломления в пластинке $A$, здесь мы этого делать не будем, так как принципиального значения для картины интерференции это в нашем случае не имеет.

где $E_0$ -- амплитуда волны до попадания на пластинку $А$. $\delta ={\varphi }_2-{\varphi }_1$. Следовательно, для наблюдаемой в результате интенсивности получим:

где $I_0=\frac{1}{2}{E_0}^2$ -- интенсивность входящей от источника света волны.

В том случае, если:

интенсивность (3) равна нулю. Если:

интенсивность равна $I_0$, что означает: вся энергия от источника попадает на «экран», потока энергии, которая возвращается в направлении источника света, нет.

Замечание

Интерферометр Майкельсона применяют для измерения маленьких расстояний, малых изменений показателей преломления. Сам Майкельсон применял свой интерферометр для опыта, по проверке связи скорости света с направлением движения луча по отношению к Земле.

Пример 1

Задание: Для того чтобы вычислить показатель преломления аммиака в одно плечо интерферометра Майкельсона помещается стеклянная трубка внутри которой находится вакуум. Ее длина $l=15\ см=15\cdot 10^{-2}м$. В случае заполнения данной трубки аммиаком интерференционная картина для длины волны равной $\lambda =589\ нм=589\cdot {10}^{-9}м$ смещается на $192$ полосы. Чему равен показатель преломления аммиака?

Решение:

Разность оптического хода волны ($\triangle $) в вакууме и аммиаке можно найти как:

\[\triangle =ln-ln_v\left(1.1\right),\]

где $n_v$=1 показатель преломления для вакуума. Запишем условие интерференционных минимумов:

\[\triangle =m\frac{\lambda }{2}\ \left(m=0,\pm 1,\pm 2,\dots \right)\left(1.2\right).\]

Приравняем правые части выражений (1.1) и (1.2), получим:

Выразим из (1.3) показатель преломления:

Проведем вычисления:

Ответ: $n=1,000377.$

Пример 2

Задание: В интерферометре Майкельсона при поступательном движении одного из зеркал интерференционная картина то исчезает, то появляется. Каково перемещение ($\triangle l$) зеркала между двумя последовательными появлениями четкой интерференционной картины, если использовать волны ${\lambda }_1$ и ${\lambda }_2$?

Решение:

Причиной исчезновения интерференционной картины можно считать то, что максимумы и минимумы интерференционной картины волн разной длины сдвинуты относительно друг друга. При достаточной разнице в длине волны максимумы в интерференции одной волны могут попадать на минимумы другой, тогда интерференционная картина полностью исчезает.

Запишем условие перехода от одной четкой картины к другой:

\[\left(z+1\right){\lambda }_1=z{\lambda }_2\left(2.1\right),\]

где $z$ -- целое число. Искомое перемещение зеркала ($\triangle l$) можно определить как:

Используя систему уравнений (2.1) и (2.2) выразим $\triangle l$:

\[\left(z{\lambda }_1+{\lambda }_1\right)=z{\lambda }_2\to z{(\lambda }_2-{\lambda }_1)={\lambda }_1\to z=\frac{{\lambda }_1}{{(\lambda }_2-{\lambda }_1)},\] \[\triangle l=\frac{{\lambda }_1{\lambda }_2}{2{(\lambda }_2-{\lambda }_1)}.\]

Ответ: $\triangle l=\frac{{\lambda }_1{\lambda }_2}{2{(\lambda }_2-{\lambda }_1)}.$

Цель работы изучение интерференционного метода измере­ния показателя преломления. Измерение показателя преломления плоскопараллельной стеклянной пластины.

Принцип действия интерферометра

Прибор, с помощью которого измеряется показатель прелом­ления, называется рефрактометром. Рассмотрим рефрактометр, принцип действия которого основан на интерференции света – интерференционный рефрактометр. В нашей работе исполь­зуется интерферометр Майкельсона. Интерферометр Майкельсо­на сыграл громадную роль в истории науки. В частности, с по­мощью такого интерферометра был осуществлен знамени­тый опыт Майкель- сона–Морли, целью которого было обнару­жение движения Земли относительно эфира.

Схема интерферометра Майкельсона приведена на рис. 1. Стрелками показано направление распространения лучей. Световой пучок от источника света S падает на светоделитель СД и разделяется на два пучка – 1 и 2 . Угол наклона светоделителя к оси падающего пучка равен 45. Пучок 1 , отраженный от светоделителя, падает на плоское зерка­ло З 1 , отражается от него (1 ), частично проходит сквозь светодели­тель (1 ) и попадает на экран Э. Пучок 2 , прошедший светоделитель, падает на плоское зеркало З 2 , отражается от него (2 ), затем отражается (2 ) от светоделителя и также

попадает на экран Э. В области перекрытия пучков 1  и 2  на экране наблюдается интерференционная картина.

Интенсивность света в каждой точке экрана зависит от разности фаз складывае­мых световых колебаний в данной точке. Для интерференционных измерений необходима высококонтрастная интерференционная картина, т.е. распределение интенсивности, в котором максимумы и минимумы достоверно отличаются от среднего фона. Такая картина получается, если, в идеале, излучение строго монохроматично, тогда разность фаз интерферирующих полей в каждой точке не зависит от времени. Такие поля называются когерентными.

Интерфе­рирующие пучки проходят разные оптические пути. Под оптическим путем понимают путь, который прошел бы свет в вакууме за то же время, что и при прохождении геометри­ческого пути в среде с показателем преломления:


В вакууме исовпадают. Если на пути луча есть несколько участков с разными показате­лями преломления, то оптический путь на всем геометрическом пути равен сумме оптических путей на каждом из участков.

В курсе оптики показано, что если разность начальных фаз интерферирующих волн равна нулю, то разность фаз
, возникающая при распространении волн, пропорциональна оп­тической разности хода лучей (разности оп­тических путей)
:

, (1)

где – длина волны излучения. Максимумы интенсивности света наблюдаются в том случае, когда разность фаз кратна 2. В этом случае
,

Если излучение немонохроматично, т.е. состоит из колебаний на разных частотах, то разность фаз в каждой точке нестационарна во времени. Если бы интерференционная картина регистрировалась с помощью быстрого фотоприемника (например, фотоаппарата с очень малым временем экспозиции), то на последовательности фотографий были бы видны контрастные интерференционные картины, однако от снимка к снимку положение максимумов и минимумов хаотически бы менялось. Инерционный фотоприемник, например глаз, усредняет эти случайные колебания, и вместо интерференционной картины на экране зрительно наблюдается однородный «серый» фон. По этой причине невозможно наблюдать стационарную интерференционную картину полей двух разных источников излучения. Во всех интерферометрах два световых пучка получают от одного источника.

Если излучение квазимонохроматично, т.е. ширина спектра колебаний
, где– средняя длина волны спектра, то контрастная интерференционная картина наблюдается, если случайный сбой фазы намного меньше 2. Для этого оптическая разность хода пучков должна быть намного меньше длины когерентности источника, т.е. такой разности хода волн, при которой интерференция исчезает. Длина когерентности непрерывного лазерного излучения составляет несколько метров минимум, тогда как оптическая разность хода пучков в данной лабораторной работе не превышает 1–2 см. Следовательно, необходимое условие для наблюдения контрастной интерференционной картины выполняется.

Если плавно изменять оптическую разность хода, то будут чередоваться максимумы и минимумы освещенности экрана. При изменении оп­тической разности хода на
светлое пятно сменится тем- ным и т.п. Плавное изменение оптической разности хода на
приведет к тому, что освещенность экрана пройдет через максимум (или минимум)N раз. Изменить оптиче­скую разность хода в интерферометре Майкельсона можно, сместив одно из зеркал вдоль направления луча, или, при неподвиж­ных зеркалах, изменив показатель преломления среды на пути одного из интерферирующих лучей. По такому принципу устроены высокоточные лазерные интерференционные измерители перемещений.

Однако для измерения показателя преломления интерферометр разъюстируют: одно из зеркал отклоняют на малый угол от нормали к оси падающего пучка (зеркало З 1 на рис. 1, штриховая линия под зеркалом). Реально угол наклона составляет несколько угловых минут, т.е. существенно меньше показанного на рисунке. Вследствие разъюстировки пучки 1  и 2  не параллельны и на экране они перекрываются частично. Как известно из теории интерференции, при наложении монохроматических плоских волн с разными направлениями распростра-

нения наблюдается интерференционная картина в виде периодической системы светлых и темных прямых полос, перпендикулярных к плоскости волновых векторов интерферирующих волн . Такая картина и будет наблюдаться на экране в области перекрытия пучков. При изменении разности фаз волн происходит сдвиг интерференционной картины как целого.

Примечание. Реальные волновые фронты – сферические поверхности, причем отклонение сферы от плоскости экрана в пределах диаметра пучка достигает (20–30). Казалось бы, на экране должны наблюдаться интерференционные кольца Ньютона. Однако вид интерференционной картины определяется взаимным отклонением двух сферических поверхностей. Можно показать, что при малом угле разъюстировки интерференционная картина будет такой же, как и при интерференции плоских волн – система прямых полос.

Интерферометр Майкельсона является одной из наиболее распространенных скелетных схем интерферометра, предназначенной для различных применений в случае, когда пространственное совмещение объектов, порождающих интерферирующие волны, невозможно или в силу каких-то причин нежелательно.

Схематическое изображение конструкции интерферометра Майкельсона

Пучок света от практически точечного источника S, находящегося в фокусе линзы, превращается этой линзой в параллельный пучок (часто в современных применениях этот пучок - просто лазерное излучение, не коллимированное дополнительной линзой). Далее этот пучок полупрозрачным плоским зеркалом SM делится на два, каждый из которых отражается назад зеркалами М 1,2 соответственно. Эти два отраженных пучка формируют на экране SC интерференционную картину, характер которой определяется соотношением форм волновых фронтов обоих пучков

Волновые фронты пучков, образующих интерференционную картину

Именно, эти два пучка в точке нахождения экрана могут иметь различные радиусы кривизны волновых фронтов R 1,2 , а также взаимный наклон последних a. В частности, легко сообразить, что оба указанных радиуса окажутся одинаковыми, а a=0, тогда и только тогда, когда зеркала М 1,2 оба плоские (или вообще одинаковой формы), и положение зеркала М 1 в пространстве совпадает с зеркальным отражением М 2 в делителе SM, то есть М 2 " (см. рис. 1).

В таком случае на экране освещенность будет однородной, что и означает идеальную юстировку интерферометра.

В случае a¹0, R 1 =R 2 (расстояния от делителя до зеркал съюстированы правильно, но углы наклона - нет) на экране появится картина эквидистантных прямых интерференционных полос, как при интерференции отраженных от двух граней тонкого клина волн.

В случае a=0, R 1 ¹R 2 (правильная угловая юстировка, но неправильные расстояния зеркал до делителя) интерференционная картина представляет собой концентрические кольца, обусловленные пересечением двух сферических волновых фронтов разной кривизны.



Наконец, в случае a=0, R 1 =R 2 , но неидеальной плоскостности одного из зеркал - картина будет представлять собой неправильной формы “кольца Ньютона” вокруг неровностей соответствующей зеркальной поверхности.

Все указанные изменения наблюдаемой картины наступают при весьма малых (десятые доли длины волны по пространственному позиционированию и высоте неровностей зеркал, и десятки микрорадиан по угловой юстировке) отклонениях юстировочных параметров от идеала. Если учесть это, становится ясным, что интерферометр Майкельсона представляет собой весьма точное устройство для контроля позиционирования объекта в пространстве, его угловой юстировки и плоскостности. Специальные методы точного измерения распределения интенсивности в плоскости экрана позволяют повысить точность позиционирования до единиц нанометров.

Техническая реализация эффекта

Техническая реализация осуществляется в полном соответствии с рис. 1 содержательной части. Лазерный пучок гелий-неонового лазера (для наглядности лучше его расширить телескопом до диаметра миллиметров 10-15) делится полупрозрачным зеркалом на два, отражается от двух плоских зеркал, и получается некая интерференционая картина на экране. Затем путем аккуратной юстировки длин плеч и углового положения зеркал добиваются исчезновения интерференционной картины в области перекрытия пучков на экране.

Применения интерферометра Майкельсона в технике весьма разнообразны. К примеру, он может быть использован для дистанционного контроля малых деформаций (отклонений от плоскостности) объекта (заменяющего собой одно из зеркал рис. 1). Такой подход весьма удобен когда по тем или иным причинам нежелательно близкое расположение объекта и эталонной поверхности (второго зеркала рис. 1). Например, объект сильно нагрет, химически агрессивен и тому подобное.

Но самое существенное техническое применение интерферометра Майкельсона состоит в использовании этой схемы в оптических гироскопах, основанных на эффекте Саньяка, для контроля сдвига интерференционной полосы, порожденного вращением.